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As a crucial technique for identifying irregular samples or outlier patterns, anomaly
detection has broad applications in many fields. Convex analysis (CA) is one of the
fundamental methods used in anomaly detection, which contributes to the robust
approximation of algebra and geometry, efficient computation to a unique global
solution, and mathematical optimization for modeling. Despite the essential role and
evergrowing research in CA-based anomaly detection algorithms, little work has
realized a comprehensive survey of it. To fill this gap, we summarize the CA
techniques used in anomaly detection and classify them into four categories of density
estimation methods, matrix factorization methods, machine learning methods, and the
others. The theoretical background, sub-categories of methods, typical applications as
well as strengths and limitations for each category are introduced. This paper sheds light
on a succinct and structured framework and provides researchers with new insights into
both anomaly detection and CA. With the remarkable progress made in the techniques of
big data and machine learning, CA-based anomaly detection holds great promise for more
expeditious, accurate and intelligent detection capacities.
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1 INTRODUCTION

Anomalies are irregular items, events, or observations that differ significantly from the majority of
the data and can translate into critical actionable information in various application domains [1–3].
For example, anomalous readings from the sensor of a large mechanical system could signify a fault
in some components of the system.

The problem of anomaly detection was raised as early as the 19th century [4], and has been
extensively studied in various fields, such as network intrusion detection [5,6], process fault
monitoring [7,8], image outlier detection [9,10], and other significant fields. Existing basic
methods for anomaly detection can be generally classified into two categories [11], i.e., distance-
based anomaly detection, such as K-nearest neighbor (KNN) [12], K-means [13] and DBSCAN [14],
and model-based anomaly detection, such as rough set theory [15], Bayesian networks [16], Markov
models [17], neural networks [18] and generative adversarial network [19]. To facilitate the
settlement of the challenging problem that anomalies are low frequency, convex analysis (abbr.:
CA in this paper), a branch of mathematics that studies convex sets and convex functions [20], has
been widely applied to anomaly detection approaches, including linear-based, probabilistic-based,
proximity-based, ensemble-based, and learning-based models [21,22].
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With a wealth of practical techniques, CA is known as one of
the fundamental techniques used to support solution and
optimization in anomaly detection models. The superiority of
the CA-based strategy can be summarized from the theoretical
and practical perspectives. On the theoretical side, CA blends the
advantages of providing efficient solutions with less complicated
models. As to the applications, CA-based strategy has produced
proverbially extensive applications in aviation, advertisement,
finance and other fields. Specifically, compared with other
kinds of strategies, CA plays a crucial role in anomaly
detection for its robust approximation in algebra and
geometry, efficient computation to a unique global solution, as
well as mathematical optimization for modeling [23,24]. In
addition, regarding the complex non-convex shape of the
collected data in the real world, local convexity (a branch of
CA) also shows outstanding performance in anomaly detection
[25], and this paper can be equally practical as guidance for local
convexity.

CA-based anomaly detection has been first proposed for
studying the convex geometric approximation of subsurfaces
and anomalies (i.e., seismic records) in 1966 [26], after which
great efforts have been made to improve its accuracy and
effectiveness. To date, convex analysis plays an essential role
in anomaly detection, based on which a large number of anomaly
detection algorithms have been developed. For example, density
estimation is an indispensable method used for outlier detection,
and matrix factorization is used to detect anomaly for the matrix
data. Although CA plays an essential role in anomaly detection
and evergrowing research has been conducted on CA-based
anomaly detection algorithms (as described in Section 2.2), to
the best of our knowledge, there is no survey paper which has
addressed the anomaly detection methods based on CA, and little
work has realized a comprehensive classification of it. In addition,
the essential relationship between anomaly detection and CA has
been rarely investigated [27,28].

Therefore, in this paper, we aim to conduct an in-depth survey
on the framework, principle, characteristics and applications of
the CA-based anomaly detection methods, and to point out
possible future research directions. Based on the function of
CA in anomaly detection, we classify the CA-based anomaly
detection methods into four categories: 1) Density estimation, a
classic anomaly detection technique including direct density
estimation and indirect density estimation, with CA
optimizing or substituting the density estimation of samples;
2) Matrix factorization, a crucial branch of anomaly detection
method by using CA to factorize the matrix data, which has
received frequent usage in machine fault diagnosis and image
outlier detection [10]; 3) Machine learning, a widely used
technique for anomaly detection based on the functions of
CA, including support vector domain method utilizing the
solution and geometric approximation of CA, convex hull
method utilizing the geometric approximation of CA, online
convex programming method utilizing the quick optimization
of CA, and neural network method utilizing the steepest descent
of CA; and 4) Other CA-based anomaly detection methods. For
each of the first three categories, the core CA-based anomaly
detection techniques and their variants are both introduced. It

should be emphasized that the function and contribution of CA
in each algorithm are described, which demonstrates the
multidisciplinary property of CA-based anomaly detection and
provides new insights for understanding the association between
anomaly detection and CA.

The rest of this paper is organized as follows: Section 2
introduces the fundamentals of CA-based anomaly detection;
Section 3 reports the direct and indirect density estimation
methods and presents the latest development trends; Section 4
reviews the techniques of matrix factorization used in anomaly
detection and their applications; The machine learning-based
anomaly detection algorithm in CA can be found in Section 5,
composed of four sub-categories; Section 6 presents other CA-
based anomaly detection methods not involved in the three
mainstream categories; Section 7 summarizes this work and
discusses the open challenges and future technological trends
of anomaly detection based on CA.

2 RESEARCH METHODOLOGY AND
STATISTICS

2.1 Research Methodology
To collect theory and applications of anomaly detection
algorithms based on CA, existing literatures are collected from
eight authoritative library databases including Google Scholar,
Web of Science, Elsevier, Springer, IEEE Xplore, Wiley, Annual
Reviews and ProQuest Dissertations & Theses (PQDT). In order
to guarantee the accuracy of the retrieval, search terms are divided
into two parts: technique terms and application terms. Technique
terms concern CA-based anomaly detection methods, in which
“convex analysis” AND “anomaly detection” OR “outlier
detection” is our primary candidate. Then the application
terms are joint, e.g., “convex hull” AND “visual surveillance,”
to construct a more comprehensive search string for their specific
applications. Full text search is adopted and no restriction on

FIGURE 1 | Number of published papers about CA-based anomaly
detection methods from 2000 to 2020.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8738482

Wang et al. Convex Analysis-Based Anomaly Detection

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


publication type is set. Besides, considering some cornerstone and
classic methods delivered earlier, there is also no limitation in
publication time. However, we spotlight the latest research
progress of CA-based anomaly detection methods since
2000 [29].

After executing each search operation, the filtering process of
papers is implemented by reviewing each paper manually in our
group. During the review, relevant cross-references are also
searched by Google Scholar. If one paper satisfies CA-based
anomaly detection algorithms, it is selected in this review for
further introduction. Based on this kind of search strategy and
criteria, appropriate publications are recorded and reviewed.

2.2 Statistical Analysis
According to our searching results, the number of published
papers and applications of CA-based anomaly detection
algorithms are statistically analyzed. As shown in Figure 1, the
development of the four CA-based anomaly detection categories
presents a rapid growth trend in the past 2 decades. As a general
and classic technique, density estimation has been employed with
a steady upward trend, except a sharp rise in 2007 when the
indirect density estimation method was produced. The curve of
matrix factorization methods is flat until the emergence of its first
model—robust principal component analysis (RPCA)—in 2011.
After that, the growth of matrix factorization is steep initially and

then slowed down, since this method is only appropriate for
matrix data. In addition to the emergence of new sub-categories
in 2003 and 2004, there was another rapid increase in the
publication number of machine learning methods in 2012,
probably because that ImageNet’s victory [30] has triggered
the excitement of experts and scholars in deep learning and
machine learning in this year. In recent decades, machine
learning methods have been of essential importance in
anomaly detection as a modern and advanced technique for
managing big data generated from sophisticated realities.
Besides the above three types of methods, there are many
other CA-based anomaly detection methods, such as the
convex combination of anomaly detectors [31], CMTMSOM
algorithm [32], and archetypal analysis [33], and the number
of corresponding researches is increasing every year.

Refer to [34], we report the various real-world applications for
CA-based anomaly detection methods in different fields, as
shown in Figure 2. Among them, the arrow illustrates that the
type of CA-based anomaly detection methods can resolve the
corresponding problem of that application, and the line thickness
is derived from the number of studies found in the literature
search. We can see that the most proverbially extensive
applications of CA-based anomaly detection methods are
network intrusion detection, extreme events detection, and
process fault mornitoring. The goal of the network intrusion

FIGURE 2 | Various applications of CA-based anomaly detection methods in different fields.
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detection is to identify unauthorized use, misuse, and abuse of
computer systems by both system insiders and external
penetrators [35,36]. The objectives of extreme events detection
include neuclear explosion, extreme climate and epidemic [37].
And by early warning, manufacturing process-oriented process
fault mornitoring is conductive to the prevention and control of
dangerous malfunction and to reduce productivity loss [38].

3 FUNDAMENTALS OF CONVEX ANALYSIS

3.1 Theoretical Framework of Convex
Analysis
Convex analysis (CA) is a branch of mathematics that studies the
properties of convex sets and convex functions, often with
applications in convex minimization, a subdomain of optimization
theory [39]. We proceed to give a few vital and succinct foundations
of CA that we used extensively in this review. In addition, we discuss
the advantages of CA compared with other mathematical methods,
which is the key to the algorithmic success.

3.1.1 Convex Sets
A set C is convex if the line segment between any two points in C
lies in C, i.e., if ∀x1, x2 ∈ C and ∀θ ∈ [0, 1], we have

θx1 + 1 − θ( )x2 ∈ C. (1)

3.1.2 Convex Functions
A function f: Rn → R is convex if the domain of function f (dom
f) is a convex set, and if for all x, y ∈ dom f, and ∀θ ∈ [0, 1], we have

f θx + 1 − θ( )y( )≤ θf x( ) + 1 − θ( )f y( ). (2)
As a valuable property of convex functions, strong convexity

can significantly speed-up the convergence of first order methods.
We say that f: X → R is α-strongly convex if it satisfies the
improved subgradient inequality Eq. 3:

f x( ) − f y( )≤▽f x( )T x − y( ) − α

2
‖ x − y‖2. (3)

A large value of αwould lead to a faster convergence rate, since
a point far from the optimum will have a large gradient, and thus
gradient descent will produce large steps in this case.

3.1.3 Convex Optimization
As a significant subfield of CA, convex optimization studies the
problem of minimizing convex functions over convex sets for
mathematical optimization. A convex optimization problem in
standard form is written as [40]:

minimize f0 x( )
s.t.

fi x( )≤ 0, i � 1, ..., m

hi x( ) � 0, i � 1, ..., p
,{ (4)

where the optimization variable is x ∈ Rn, the objective function
f0: R

n → R is convex, inequality constraint functions
fi: R

n → R (i � 1, ..., m) are convex, and equality constraint
functions hi: Rn → R (i � 1, ..., p) are affine [41].

Convex optimization problem shows many beneficial
properties. For example, every local minima is a global
minima, and if the objective function is strictly convex, then
the problem has at most one optimal point. Therefore, if a task
can be formulated as a convex optimization problem, then it can
be solved efficiently and reliably with effective and rapid
optimization and solution, using interior-point methods or
other special methods for convex optimization. General
convex optimization focuses on problem formulation and
modeling, more specifically, it is applied to find bounds on the
optimal value, as well as approximate solutions. These solution
methods are dependable enough to be embedded in computer-
aided design or analysis tools, or even real-time automatic or
reactive control systems.

3.1.4 Duality
The core design of the Lagrangian duality (or just duality) is to
consider the constraints in the convex optimization problem Eq.
4 by constructing an objective function with a weighted sum of
the constraint functions [42]. Then the Lagrangian
L: Rn × Rm × Rp → R for the problem Eq. 4 is

L x, λ, v( ) � f0 x( ) +∑m
i�1

λifi x( ) + ∑p
i�1

vihi x( ), (5)

with dom L � D × Rm × Rp, where λi is the Lagrange multiplier
associated with the ith inequality constraint fi(x) ≤ 0, and vi is the
Lagrange multiplier associated with the ith equality constraint
hi(x) = 0. In addition, the vectors λ and v are referred to the dual
variables or Lagrangemultiplier vectors of the problem Eq. 4 [39].
Therefore, the Lagrange dual function (or just dual function)
g: Rm × Rp → R is defined as the minimum value of the
Lagrangian over x: for λ ∈ Rm, v ∈ Rp,

g λ, v( ) � inf
x∈D

L x, λ, v( )

� inf
x∈D

f0 x( ) +∑m
i�1

λifi x( ) +∑p
i�1

vihi x( )⎛⎝ ⎞⎠. (6)

The associated dual problem of convex optimization problems
could often produce an interesting interpretation regarding the
original problem and lead to an efficient or distributed method
for solving it. Therefore, it also reflects theoretical or conceptual
advantages of convex optimization and CA [43].

3.2 Association Between Anomaly
Detection and Convex Analysis
CA has substantially geometrical and computational advantages.
Common techniques, such as the Karush-Kuhn-Tucker (KKT)
optimality conditions [44], gradient descent method [45] and
Jensen’s inequality [46], and common applications, such as norm
approximation [40], geometric projection and maximum
likelihood estimation in CA, are all devoted to typical anomaly
detection algorithms. Such anomaly detection algorithms could
benefit from CA in robust approximation in algebra and
geometry, efficient computation to global unique solutions,
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and mathematical optimization. Therefore, CA is a valuable and
intrinsic part and motivation for anomaly detection.

We review several architectures and methods of existing
anomaly detection techniques based on CA and group them
into four categories according to the underlying approach
adopted by each technique. These include 1) density
estimation methods based on the way how density directly or
indirectly estimated, 2) matrix factorization methods, 3) machine
learning methods based on the support vector domain algorithm,
convex hull algorithm, online convex programming algorithm
and neural network algorithm, and 4) other methods. The
anatomy of CA-based anomaly detection methods and their
cornerstone algorithms are illustrated in Figure 3.

4 DENSITY ESTIMATION

Density estimation is an indispensable method used for outlier
detection, one of the most elementary issues of anomaly
detection. There are two typical algorithms based on CA for
which the density estimation is directly or indirectly used. In
these methods, “density” describes the probability that the value
of a random variable is generated by a certain distribution.
Thresholds are set up for density estimation methods, and
samples with a density below the threshold are outliers.

4.1 Direct Density Estimation
4.1.1 Model Description
In direct density estimation, abnormal data are defined as samples
with a density less than the preset threshold. A probability density
function for a continuous random variable is a non-negative
Lebesgue-integrable function [47], and satisfies

FX x( ) � ∫x

−∞
fX u( )du, (7)

where FX(x) is the cumulative distribution function of X.
Since the multivariate Gaussian distribution model (see

Figure 4A) [48] is not capable of describing the situation
where the data in the same set conform to multiple different
distributions, the mixture of Gaussian (MoG) (see Figure 4B for
instance, which is a linear combination of Gaussian distributions)
was used to model the general data distribution [49]. Each
Gaussian distribution in the MoG is defined as a component,
and then the probability density of the target variable x, p(x), is
defined in the MoG as:

p x( ) � 1�����
2π( )d

√ ∑γ
k�1

αk
1�������

det ∑k( )√ exp −1
2
x − μk( )T∑−1

k
x − μk( )( ),

(8)

FIGURE 3 | Anatomy of CA-based anomaly detection methods and their cornerstone algorithms.
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where d represents the sample dimension, αk is a mixed
coefficient, μk and ∑k are the mean and covariance matrix of
the kth component, and γ is the number of mixed components.
The Expectation-Maximization (EM) algorithm [50], a typical
algorithm using CA, is adopted to optimize the parameter αk, μk
and ∑k. The EM algorithm searches for the maximum likelihood
estimation of parameters in a probability model that depends on
unobservable hidden variables. For samples x1, x2, ..., xn, the
hidden variables of each sample are assumed to be z(j), j ∈ [1, m].
Then, the algorithm finds the lower bound of the likelihood
function through Jensen’s inequality [46].

ln L θ( ) � ∑n
i�1

ln∑m
j�1

Qi z
j( )( )p xi, z j( ); θ( )

Qi z j( )( ) ≥ ∑n
i�1

× ∑m
j�1

Qi z
j( )( )lnp xi, z j( ); θ( )

Qi z j( )( ) (9)

In Eq. 9, L(θ) is the likelihood function, and Qi(z
(j)) denotes

the probability of xi belonging to class z(j). After parameter
optimization through CA, samples with a density from the
MoG model less than the preset threshold are outliers.

4.1.2 Systems and Applications
Inspired by the MoG model with the EM algorithm, Woodward
and Sain [51] used the EM algorithm to identify outliers from a
mixture of normal distributions when there is missing data. They
confirmed through simulations and examples that using the EM
algorithm on the entire dataset resulted in higher detection
probabilities than using only the complete data vectors, which is
the subset of the entire dataset that includes only data vectors for
which all of the variables were observed. The MoG model with the
EM algorithm, can detect nuclear explosions from a large number
of background signals (such as earthquakes and mining
explosions) using seismic signals (or any other discriminant)
[52]. Carrying out outlier detection to recognize heart disease,
biological virus invasion, and electrical power grid faults has also
been explored [53–55].

4.1.3 Strengths and Limitations
By the Jensen’s inequality of the logarithmic function in the
expectation format, the lower bound of the likelihood function
L(θ) of parameters in direct density estimation was discovered
rapidly, precisely, and effectively. However, the principal
drawback of this method is that the number of mixed
components is data-dependent due to the requirement such as
weights ∑γαk = 1, so it is a tough choice, and the mixture of
multiple Gaussianmodels requires more samples to overcome the
curse of dimensionality [56].

4.2 Indirect Density Estimation
4.2.1 Model Description
Although direct density estimation method is adaptable to
multiple different distributions estimation and efficient
parametric optimization, it can not correctly reflect the
pattern’s characteristics for most high-dimensional conditions,
as multivariate functions are intrinsically difficult to estimate
[57]. To solve this problem, indirect density estimation methods
have been developed. The main reason for the name “indirect
density estimation” is that it does not require density estimation.
The goal of this method is to estimate the density ratio w(x),
called importance, of the independent and identically distributed
(i.i.d.) training samples {xtr

i }ntri�1 and i.i.d. test samples {xte
j }ntej�1:

w x( ) � pte x( )/ptr x( ), (10)
where pte(x) and ptr(x) are the probability density function [58]
for the training data and test data, respectively. w(x) is non-
negative because pte(x) ≥ 0 and ptr(x) > 0 for all x belonging to the
data domain D ⊂ (Rd). w(x) for regular samples is close to one,
while those for outliers tend to deviate substantially from one
(i.e., close to 0) because the training data only contains regular
samples, and pte(x) would be close to 0 where outliers exist.

With the key constraint of avoiding estimating densities pte(x)
and ptr(x), adhoc studies have estimated the w(x) to detect the
outlier by convex techniques, in which kernel mean matching
(KMM) [59], logistic regression (LogReg) [60], the Kullback-
Leibler importance estimation procedure (KLIEP) [61,62], least

FIGURE 4 | Gaussian model and the mixture of Gaussian model: (A) The Gaussian model imposes the ellipsoidal density model on the two-dimensional data; (B)
the MoG model is a linear combination of Gaussian distributions. Apertures of diverse sizes are their transformations with different outlier detection errors.
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squares importance fitting (LSIF) [63], and unconstrained least
squares importance fitting (uLSIF) [64] are popular. For the
above-listed methods, the convex expressions for the
estimation and their appraisal are summarized in Table 1; we
describe the latest two methods in detail.

4.2.1.1 LSIF model
Through convex quadratic programming, Kanamori et al.
estimated the w(x) of the sample, which did not involve
density estimation by LSIF, and applied it to outlier detection
in a toy dataset by considering w(x) as the index of abnormal
degree [63]. The LSIF model hypothesizes that w(x) can be
estimated by a linear model ŵ(x) � αTφ(x), where α = (α1,
α2, ..., αb) is the coefficient vector, b is the number of parameters,
and φ(x) � (φ1(x),φ2(x), ...,φb(x)),φ(x)> 0b,∀x ∈ D
represents the basis functions. The least squares method [65]
was employed to minimize the squared error between the
estimation ŵ(x) and the actual value w(x) on the training
dataset. With the help of empirical estimation, the density
estimation problem of interest can be transformed into explicit
convex quadratic programming in Eq. 11 and then the global
optimal solution can be obtained:

minα∈Rb

1
2
αTĤα − ĥ

T
α + λ1Tb α[ ] s.t. α≥ 0b. (11)

In Eq. 11, Ĥ � 1
ntr

∑ntr
i�1

φ(xtr
i )φ(xtr

i )T, ĥ � 1
nte

∑nte
j�1

φ(xte
j ), and

λ1Tb α(λ≥ 0) is the regularization term to prevent overfitting.

4.2.1.2 uLSIF Model
With convex quadratic programming, a unique global solution
can be obtained using the LSIF method. However, it tends to
suffer from a numerical problem, since the numerical errors
tend to accumulate when tracking the regularization path;
consequently, it is not practically reliable. Therefore, uLSIF,
a practical alternative to LSIF, was developed to provide an
approximate solution to LSIF in a computationally efficient
and reliable way [64]. By ignoring the non-negativity
constraint in the optimization problem in Eq. 11, Kanamori
et al. derived the following unconstrained optimization
problem:

minβ∈Rb

1
2
βTĤβ − ĥ

T
β + λ

2
βTβ[ ]. (12)

In Eq. 12, a quadratic regularization term λ
2β

Tβ is added,
instead of the linear one λ1Tb β, since the linear penalty term can
not work as a regularizer without the non-negativity constraint.

Equation 12 is an unconstrained convex quadratic programming,
so the solution can be analytically computed as

~β λ( ) � Ĥ + λIb( )−1ĥ, (13)
in which Ib is the b-dimensional identity matrix. Due to the
discarding of the non-negativity constraint, some of the learned
parameters could be negative. To compensate for this
approximation error, the solution was modified by Eq. 14 in
an element-wise manner:

β̂ λ( ) � max 0b, ~β λ( )( ). (14)
One advantage of the above-unconstrained formulation is that

the closed-form solution can be computed simply by solving a
system of linear equations. Consequently, its calculation can be
stable when λ is not too small.

Afterward, several variants of the basic technique uLSIF model
were developed, such as KuLSIF as a kernelized variant [66], and
RuLSIF as a α-relative variant [67]. In addition, machine learning
models like convolutional neural networks (CNN) [68], gradient
boosting over decision trees (GBDT), and a one-layer neural
network [69], can be trained with the uLSIF loss function to detect
anomalies.

4.2.2 Systems and Applications
Since proposed, the uLSIF method has received widespread usage
in outlier detection. For instance, based on the experimental
results of 12 datasets available from Rätsch’s benchmark
repository [70], the SMART disk-failure dataset, and the in-
house financial dataset, Hido et al. concluded that the uLSIF-
based method is a reliable and computationally efficient
alternative to existing outlier detection methods [71]. Umer
et al. also illustrated its superiority in the detection of
malicious poisoning attacks in 2019 [6]. In addition, change-
point detection in time series data such as smart home time series
data [72,73], outlying image detection in hand-written digit
image and face image data [68], outlier detection in both
synthetic and benchmark datasets [74], and computer game
cheats detection in game-traffic data [75], all proved its
excellence.

4.2.3 Strengths and Limitations
Since estimating density is complex (especially in high-
dimensional space), a convex heuristic enables indirect density
estimation methods against the curse of dimensionality without
going through density estimation. The outliers tend to have

TABLE 1 | Indirect density estimation methods.

Method Covex expression Strengths and limitations

KMM Convex quadratic programming Dependent and hard parameter tuning, demanding computation
LogReg Convex nonlinear Easy model selection, rather expensive computation
KLIEP Convex nonlinear Easy model selection, rather expensive computation
LSIF Convex quadratic programming More efficient computation, numerically unreliable regularization path tracking
uLSIF Unconstrained convex quadratic programming Efficient and numerically stable computation, easy model selection
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smaller importance values (close to zero) and then they emerge by
a suitable threshold. Optimization methods, such as Newton’s
method, the conjugate gradient method, the
Broyden–Fletcher–Goldfarb–Shanno algorithm for a convex
nonlinear problem, the gradient descent method, KKT
conditions method [44], and the inexact augmented lagrange
multiplier (IALM) method for unconstrained and constrained
quadratic programs, are not only efficient, but could find the
global minima. The uLSIF-based method is highly scalable to
large datasets, which is of critical importance in practical
applications.

The indirect density estimation method, however, is of well-
documented vulnerability to a poisoning attack, even with a modest
number of attack points inserted into the training data [6]. When an
intelligent adversary (the onewith full or partial access to the training
data) injects well-craftedmalicious samples into the training data, an
incorrect estimation of the w(x) can occur.

5 MATRIX FACTORIZATION

Matrix factorization is a series of methods used for anomaly
detection when the data can be represented as a matrix, i.e., a
significant representation of data in which columns generally
represent linearly independent features and rows represent
samples. The dominant mechanism of these methods is that
convex programming is employed to factorize the matrix data.
Among matrix factorization methods, robust principal
component analysis (RPCA) methods consisting of RPCA and
its relative extension and improvement, are mainstream and
emerging. RPCA has the advantage of tolerance to high-
amplitude sharp noise instead of the Gaussian distributed
noise of its baseline PCA (or Singular Value Decomposition,
SVD) [76]. In this method, a background dictionary is used to
represent each pixel linearly, and the residual is taken as the
pixel’s abnormal level.

A notable feature of the RPCA series is that there are different
definitions and detection methods for anomalies in different
applications, but all are based on matrix factorization.
Therefore, the matrix factorization models, together with their
systems and applications, strengths, and drawbacks, are provided
in this section.

5.1 Model Description
The RPCA model and its relative extension and improvement
have been widely applied in anomaly detection [77–79] after
Candés et al. recovered a low-rank component and a sparse
component from the original data matrix by a convenient convex
programming, which achieved RPCA via principal component
pursuit [80].

5.1.1 RPCA method
A data matrix S ∈ Rn×m with n samples and m variables can be
factorized by RPCA as:

S � L + E, (15)

where L ∈ Rn×m is a low-rank component, E ∈ Rn×m is a sparse
matrix containing outliers and process faults, and Eij � 0 denotes
that the jth variable in the ith sample is noise-free. The essence of
the RPCA algorithm is to address the convex optimization
programming demonstrated in Eq. 16:

min ‖ L‖p + λ ‖ E‖1
s.t.S � L + E

(16)

In Eq. 16, ‖L ‖* is the nuclear norm of the matrix L, obtained by
the sum of the singular value of L. ‖E ‖1 is the norm of matrix E,
i.e., the sum of absolute values of all elements in E. Also, the
parameter λ provides the trade-off between the norm factor ‖L ‖*
and ‖E ‖1, which can be calculated according to the standard
Eq. 17

λ � 1���������
max n,m( )√ , (17)

and then adjusted slightly according to prior knowledge of the
solution.

The optimization problem in Eq. 16 is convex and linearly
constrained, and several efficient algorithms are available,
including the alternating direction method of multipliers
(ADMM) [81], IALM [82], and singular value thresholding
(SVT) [83]. Key steps of the RPCA problem solved by IALM
are demonstrated in Algorithm 1.

Algorithm 1: RPCA problem using IALM

5.1.2 Stable principal component pursuit method.
After Isom and LaBarre [84] first applied RPCA in the
monitoring of fuel cell power plants’ process fault detection,
Zhang et al. [85] proposed an LRaSMD-based Mahalanobis
distance (LSMAD) method for hyperspectral outlier detection.
This algorithm dates to the SPCP model proposed by Zhou et al.
[86], in which a noise item N (i.e., i.i.d. noise on each entry of the
matrix) programming was

min
L,E

‖ L‖p + λ ‖ E‖1 s.t. ‖ X − L − E‖F ≤ δ, (18)

where ‖·‖F denotes its Frobenius norm and ‖N ‖F ≤ δ for some δ >
0, thus L* and E* can be estimated more stably.

5.1.3 Low-Rank representation method.
Xu et al. [87] suggested leveraging LRR [88] for anomaly
detection in hyperspectral images (HSIs). The LRR model
introduced a dictionary matrix D in the linear decomposition
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of the background matrix, and the convex optimization problem
in Eq. 19 is solved for matrix factorization:

min
Z,E

‖ Z‖p + λ ‖ E‖2,1 s.t.X � DZ + E. (19)

In Eq. 19, ‖·‖2,1 is defined to be the sum of ℓ2 norms of column
vectors of a matrix, and ‖E ‖2,1 represents the ℓ2,1-norm to
characterize the error term E. LRR could handle the data
collected from multiple subspaces well.

In 2020, Su et al. [10] proposed an LRCRD method, and this
model is primarily suitable for hyperspace. They employed
another ℓ2 norm to collaborate the global background and
anomaly feature as local representation process attribute on
the foundation of LRR; thus, a functional outlier detection
model with strong representation ability was built:

min ‖ Z‖p + β∑N
i�1

‖ Zi‖22 + λ ‖ E‖2,1 s.t.X � DZ + E, (20)

where ‖Z ‖* is still the nuclear norm of Z, convexly approximating
the rank of Z, N is the number of pixels, β > 0 and λ > 0 are both
regularization coefficients.

5.1.4 RPCA-OP method.
When it comes to strongly corrupted data, such that the
columns of all entries are corrupted, the RPCA via outlier
pursuit (RPCA-OP) method, an efficient convex optimization-
based algorithm, should be employed for outlier detection
[89]. Experiments have confirmed that the RPCA-OP
method can even endure column-sparse or row-sparse
errors. It recovers the correct column space of the
uncorrupted matrix rather than the exact matrix itself like
RPCA. Its convex optimization program is shown in Eq. 21:

min ‖ R‖p + λ ‖ C‖2,1 s.t.S � R + C, (21)
whereC is still a sparse matrix with some columns’ elements all be
zero, ‖C ‖2,1 promotes column-wise sparsity. To ensure success,
we could tune parameter λ to 3

7
��
γn

√ with λ being the fraction of
corrupted points. Outliers exist in the set of nonzero columns of
Ĉ (i.e., Î � {j: ĉij ≠ 0 for some i}).

5.2 Systems and Applications
Anomaly detection models with matrix facts are primarily
applied in image outlier detection and process fault
monitoring. Nevertheless, there are different definitions and
detection methods for anomalies in these two applicable
scenarios.

In image detection, the sparse matrix, one component,
indicates outliers. Outlier detection can be simply done by
finding the nonzero columns of Ep, when all or a fraction of
the data samples are clean. For the cases where Ep only
approximately has sparse column supports, we can use
threshold strategy (threshold τ > 0), that is, the ith data vector
of X is discriminated to be an outlier if and only if

‖ Ep[ ]:,i‖2 > τ. (22)

In process fault monitoring, the data may contain persistent
process noise which weakly affect production. The noise may be
caused by the sensor errors, the subjective control by operators
with different experience, or the instability of the data
transmission network. However, the faults, such as sudden
changes in system behavior, should be paid more attention to
and identified as anomalies.

In 2011, Isom and Labarre used the RPCA method for process
monitoring for the first time by straightforward observation of
the sparse matrix obtained [84]. Afterwards, powerful
multivariate statistics were built for fault detection based on
either component matrix. For example, the statistics L2 = xTZ
(x is an online testing sample) [83] and Hotelling′s T2 [90] were
built. If their value is greater than the threshold under a certain
normal condition, a fault occurs.

Matrix factorization-based methods are extensively used in
many applications of interest, including image outlier detection,
especially in hyperspectral scenarios, video surveillance, and
mechanical fault detection. Table 2 lists the applicable
scenarios, models, and the improvement and application of
the four sets of methods mentioned above, in which L denotes
the low-rank component, E denotes the sparse component, N is
the additional small dense noise, and Z is the (low-rank)
coefficient matrix.

5.3 Strengths and Limitations
In the matrix factorization-based anomaly detection method, CA
is of great significance in the fundamental linear factorization of
the matrix. CA generally illuminates this method by norm
approximation; nuclear norm minimization, as a convex
surrogate, replaces the rank function, solves the original NP-
hard problem, andmakes it successful and efficiently computable.
However, this method is only applicable when the sample can be
represented as a matrix.

6 MACHINE LEARNING

CA has been adopted in many machine learning technologies,
including logistic regression, support vector machines, and
artificial neural networks. Therefore, these machine learning
methods have inevitably and selectively been applied to
anomaly detection [96]. In this review, we classified them into
four sub-categories, i.e., support vector domain method, convex
hull method, online convex optimization method, and neural
network method, in conformity with the role of CA in anomaly
detection in the machine learning field.

6.1 Support Vector Domain Method
6.1.1 Model Description
This method aims to discover a data description with a
presupposed shape from the training dataset. A good
description covers all target data but includes no superfluous
space. Points outside the description in the test set will be detected
as outliers.

Among the support vector domain methods, the support
vector machine (SVM) [97] is a mainstream two-class
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classification method for fields such as text detection, human
body recognition, and freight transportation [98]. The SVM
separates two types of samples with a maximal margin by a
hyperplane. For outlier detection, since there is often only the
target sample in the training set due to the lack of negative
examples, the original SVM is no longer applicable, and support
vector data description (SVDD) was developed by Tax and Duin
[43] for one-class classification. It looks for a spherical description
as implicit mapping, as shown in Figure 5A. This description
encloses most training samples xi and minimizes the volume
(i.e., minimizes R) of the hypersphere (R, a), where R is the radius
and a is its center.

SVDD adopts the soft-margin criterion [99], and a slack
variable ξ is introduced to penalize training samples outside
the sphere (i.e., the red point in Figure 5A, with square
distance to the center of the sphere is greater than R2). It
operates as Step 1 in the following SVDD algorithm to find
the hypersphere with the penalty of ξi, where C is the
regularization factor (i.e., the trade-off between the volume
and the errors) for tighter description and higher accuracy.
The detailed algorithm flow (SVDD by the Lagrange multiplier
method) is presented as follows:

Step 1) min R2 + C∑iξi s.t. ‖xi − a ‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i;

Step 2) L(R, a, αi, γi, ξi) = R2 + C∑iξi − ∑iαi{R
2 + ξi − (‖xi ‖2 −

2a·xi + ‖a ‖2)} − ∑iγiξi is the loss function with the Lagrange
multipliers αi ≥ 0 and γi ≥ 0;
Step 3) Setting partial derivatives to zero provides the
following constraints: zL

zR � 0: ∑iαi � 1; zL
za � 0:

a � ∑i
αixi∑i
αi

� ∑iαixi;
zL
zξi

� 0: C − αi − γi � 0;

Step 4) Extrapolate 0 ≤ αi ≤ C according to the last equation in
Step 3) αi = C − γi and αi ≥ 0, γi ≥ 0;
Step 5) Resubstitute Step 3) into Step 2): L = ∑iαi(xi ·xi) −∑i,jαiαj(xi ·xj) s.t. 0 ≤ αi ≤ C;
Step 6) R2 = (xk ·xk) − 2∑iαi(xi ·xk) +∑i,jαiαj(xi ·xj), xk is the set
of support vectors with 0 < αi < C;
Step 7) Test a new object z by the distance to the center of the
sphere ‖z − a ‖2 = (z ·z) − 2∑iαi(z ·xi) + ∑i,jαiαj(xi ·xj), if this
distance is larger than R2, then the object z is flagged as an
anomalous object.

Applying the Lagrange multiplier method [44], the dual
problem can be obtained by the KKT conditions, and the
problem that both minimum volume and maximum samples
are expected to be fulfilled can be transformed into the above
convex quadratic programming problem in Step 1 of the SVDD
algorithm. Besides, the duality a = ∑nαixi could generate the
sparse center of the sphere, which improves its test performance.

TABLE 2 | Matrix factorization method.

Methods Applicable scenarios Model Improvement and application

RPCA [80] Basic scenarios S = L + E For fuel cell power plants process fault detection [84], FRPCALG model with RPCA and Laplacian
manifold graph combined [91], fault detection in a blast furnace process [90], RVAE model for
unsupervised cell outlier detection [8]

SPCP [86] Data with small entry-wise
perturbations

X = L + E + N LRaSMD model [92] and LSMAD model for HSI anomaly detection [85], a joint low-rank sparse
modeling algorithm for CFRP composites defects detection [7]

LRR [88] Data from multiple subspaces X = DZ + E LRASR model [87], abundance- and dictionary-based low-rank decomposition (ADLR) model [93],
and LRCRD model [10] for HSI anomaly detection

RPCA-
OP [89]

Strongly corrupted data S = R + C Robust Deep Autoencoder (RDA) model [94], OC-NN [95], a new factorization -based RPCA model
[9] for e.g., image anomaly detection and video surveillance

FIGURE 5 | Support vector spherical description based on the training set: (A) SVDD and (B)NSVDD. The dashed circles represent samples in the description and
the solid circles on and outside the description. The circles on the description are SVs (i.e., a solid circle crossed by a curve) containing both target samples and outliers in
(B) NSVDD. The support vector domain method penalizes observations not in the correct position, i.e., red circles in (A) SVDD and (B)NSVDD because normal samples
should be inside the description, and blue dashed circles in (B) NSVDD because outliers should fall outside the description.
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Figure 5A is a visual representation of SVDD, and the points
on the surface with 0 < αi < C are support vectors (SVs). The red
circles are like the black ones (i.e., normal samples in the training
set). However, the red circles are outside the hypersphere, so they
are penalized.

To further enhance the flexibility of SVDD when negative
examples are available, the following SVDD with negative
samples (NSVDD) was also proposed by Tax and Duin [43].
NSVDD assumes that the target samples are in the hypersphere as
much as possible (i.e., the black circle in Figure 5B), but the
outliers are outside (i.e., the green circle in Figure 5B). Then, the
normal points (i.e., the red circle) and the outliers (i.e., the blue
dashed circle) should be penalized because they are not in the
correct position. Eq. 23 describes how NSVDD works:

min R2 + C∑
i

ξ i

s.t. yi R2− ‖ xi − a‖2( )≥ 0 − ξ i, ξ i ≥ 0,∀i, (23)
in which yi ∈ { − 1, 1} is the label of the training sample with “-1”
denoting an outlier. NSVDD is identical to the normal SVDD
when new variables αi′ � yiαi are defined, and both are convex
representations.

By employing two slack variables, NSVDD has shown higher
classification accuracy with a varying radius of the hypersphere
[100]. However, the outlier placed on the boundary of the
description (i.e., the blue solid circle crossed by a curve in
Figure 5B can not be distinguished from the SVs in the target
class (i.e., black solid circle crossed by a curve) based on Step 7 in
the SVDD algorithm. By applying kernel techniques, both SVDD
and NSVDD can obtain a rigid hypersphere for nonlinear
problems with greater flexibility and malleability.

SVDD is an unsupervised machine learning method for anomaly
detection, while NSVDD is supervised. The related semi-supervised
method [101] was developed in 2020 for rolling element bearings
default detection by combining SVDD and cyclic spectral coherence
(CSCoh) as domain indicators [102].

6.1.2 Systems and Applications
Although affected by noise and limited to hypersphere data,
standard SVDD can be rated as a cornerstone in the field of
anomaly detection. With its improvement, it has been explored
for anomaly detection with high-dimensional and large-scale
data [103], adversarial examples [104], contaminated data
[105], and other anomaly detection situations. Furthermore,
in 2020, Yuan et al. [106] demonstrated that this method can
undertake robust process monitoring in over 20 real-life
datasets, including vehicle evaluation, breast cancer, and
process engineering.

6.1.3 Strengths and Limitations
By transforming the mini-volume and most-points problem into
convex quadratic programming, convexity makes KKT
conditions necessary and sufficient. The optimality of the
convex program is adequate for solving the data description of
the support vector domain method, which results in accuracy and
efficiency for global outlier detection. This method ensures the
accuracy of normal samples by minimizing the volume of the
description and the error of outlier detection. Compared with
other outlier detection methods, this method shows comparable
or improved performance for sparse and complex datasets.
However, for minuscule target error rates, the SVDD could
break down, and this method is not preferred for high-
dimensional samples.

6.2 Convex Hull Method
6.2.1 Model Description
The support vector domain method is a fundamental and
special case of the convex hull method, in which the
hypersphere is a convex hull (CH), and solutions are most
provided by convex programming. The CH for a set of points
S ∈ Rn in a real vector space V is the minimal convex set
containing S [107]. The CH classifier, belonging to the one-
class classifier, builds the CH border according to the training

FIGURE 6 | An example of the convex hull for less overfitting.
FIGURE 7 | APE technique using the approximate 2D convex hull.
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set (comprising the points of the normal class), and samples
outside the border in the test set are outliers. An example is
illustrated in Figure 6.

The convex hull CH(S) can be calculated according to Eq. 24:

CH S( ) � ∑|S|
i�1

βixi| ∀i: βi ≥ 0( ) ∩ ∑|S|
i�1

βi � 1, xi ∈ S
⎧⎨⎩ ⎫⎬⎭. (24)

Since the existence of outliers in the training set may lead to an
overfitting decision model, the CH can be corrected by a
parameter λ ∈ [0, + ∞), according to Eq. 25 [108]:

vλ: λv + 1 − λ( )c|v ∈ CH S( ){ }. (25)
In Eq. 25, v incorporates the vertices of the original convex

hull in Eq. 24 regarding their center c � 1
D∑ixi, ∀i � 1, ..., |D|;

thus, vλ contains the modified vertices of CH(S). From this
equation, it can be concluded that the CH would be expanded
or contracted when λ is greater than 1 or lower than 1,
respectively.

However, this approach shows twomajor drawbacks. First, the
computation cost is high. And second, the training data’s boundary
may not be well-modeled by a convex polytope. Calculating the CH
of a high-dimension dataset requires a tremendous computational
cost. If a dataset comprises N samples inRn, the cost of computing
the CH is estimated as O(N(n/2)+1) [109]. This problem can be
solved with the approximate polytope ensemble (APE) technique
[110], which first constructs p random 2D projections of the
original dataset and then model the CH for each 2D projection.
Then, outliers are identified by those points which are outside of at
least one of these projections. The main idea of this approach is
demonstrated in Figure 7, where a dataset inR3 is projected in two
2D planes, and the red dot out of the CH of projection #2
represents an outlier. Despite the good performance of the APE
approach, an inaccurate classification would happen in non-
convex sets. Hence, non-convex APE (NAPE), an extension of
managing non-convex boundaries, is proposed. The underlying
idea of this extension is to divide the non-convex boundary into a
set of convex problems. Then, each convex problem can be solved
using the APE algorithm.

6.2.2 Systems and Applications
Outlier detection performance was investigated using this
method on over 200 datasets [111–113], even in multi-modal
distributions of automated visual surveillance detection [114].
All exhibited a trade-off between the detection rate (true
positive rate) and false alarm rate (false positive rate), and
AUC greater than 0.9. In practice, CHs are usually adopted in
industrial intelligent fault diagnosis, multiaxial high-cycle fatigue
recognition, and other anomaly detection applications, some of
which are described in He et al. [115]’s and Scalet [116]’s studies.

6.2.3 Strengths and Limitations
As a flexible geometric model, a CH is typically a substantial
approximation of the target region. It can approximate a
polytope without overfitting, even in a high-dimension situation.
The low computational and memory storage requirements allow
the APEmethod to be used under limited resources. By the vertex of

the CH of the training set, outliers can be relatively easily
recognized. However, the boundaries of the training data may
not be well modeled by APE in more general non-convex
scenarios. Furthermore, due to its ability to manage strong
non-convex distributions, NAPE, a more general extension
than the APE algorithm, outperforms the rest of the outlier
detection methods including APE in many cases [109,110].
Nevertheless, further efforts are needed to reduce the
computational costs of building NAPE.

6.3 Online Convex Programming Method
6.3.1 Model Description
Unlike the CH method, which is largely an offline algorithm,
the online convex programming (OCP) method can be
explored in online anomaly detection methods for the data
stream. OCP, such as the online gradient descent (OGD)
algorithm [117], as defined by Zinkevich [118], features a
sequence of convex programmings with feasible sets that are
identical, but the cost functions are diverse. According to
what has been learned, the algorithm should always choose a
point for the lowest cumulative cost before observing the cost
function. Whenever the anomaly score (i.e., probability,
density, or other custom metrics) efficiently and simply
calculated by the OCP for the current state falls below the
dynamic threshold, we declare an anomaly.

OCP can be broadly viewed as a game between two
opponents: the Forecaster and the Environment [74,119].
The Forecaster constantly predicts changes in a dynamic
Environment, where the influence of the Environment is
depicted by a sequence of convex cost functions with
arbitrary variations over a given feasible set, and the
Forecaster attempts to pick the next feasible point in such a
way to reduce the cumulative cost as much as possible.

An OCP problem with horizon T can be outlined by a convex
feasible set U ⊆ Rd and a family of convex functions
F � f: U → R{ }. The algorithm of OCP is described in the
following section.

Algorithm 2: Online convex programming

The Forecaster will minimize the difference between the
actual cost incurred after T rounds of the game and the
smallest cumulative cost that could be achieved in
hindsight using a single feasible point. Given a strategy μT

and a cost function tuple fT, the regret w.r.t. uT is defined as
Eq. 26

RT μT;fT, uT( ) ≜ ∑T
t�1

ft ût( ) −∑T
t�1

ft ut( )

� ∑T
t�1

ft μt ût−1, ft−1( )( ) −∑T
t�1

ft ut( ), (26)
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where uT = (u1, ..., uT) ∈UT, a time-varying tuple, is a comparison
strategy distinguishing from the Forecaster’s observation-driven
strategy μT and it does not depend on the previous points or cost
functions but only on the time index t.

Then the goal would be to select a suitably restricted subset
CT ⊂ UT and employ the Forecaster’s tactic μT to ensure that the
worst-case regret

sup
fT∈FT

sup
uT∈CT

RT μT;fT, uT( ) ≡ sup
fT∈FT

∑T
t�1

ft ût( ) − inf
uT∈CT

∑T
t�1

ft ut( )⎧⎨⎩ ⎫⎬⎭
(27)

is sublinear in T. Whenever the anomaly score (i.e., probability,
density, or other custommetrics) efficiently and simply calculated
by the OCP for the current state falls below the dynamic
threshold, we declare an anomaly.

6.3.2 Systems and Applications
Online anomaly detection based on OCP fulfills the needs of some
fields, such as industrial production and network routing, where
decisions should be made before the comprehension of true costs.

Inspired by recent developments in OCP, Raginsky et al. [120]
designed and analyzed a so-called FHTAGN method consisting of
assigning a belief (probability) and flagging potential anomalies
according to the belief, exploring online anomaly detection methods
with dynamic thresholding built on limited feedback. Nevertheless,
classic statistical change point detection studies, such as this work [120],
surveyed the transient outlier instead of the persistent change. Therefore,
persistent change was considered for anomaly detection based onOCP.
Further improvements have beenmade to achieve lower computational
complexity [121] or higher anomaly detection accuracy [122].

6.3.3 Strengths and Limitations
Convex optimization provides a more versatile approach to tackling
complex situations, especially sequential change point detection. Its
efficiency and simplicity make it possible to perform computations
in real-time. By the convex cost function of the Environment,
schemes such as mirror descent for the OCP method are
possible. It allows us to remarkably predict the extrinsic
anomalous behavior for the next observation concerning the best
model based on what we have seen in the past. However, this work
has not been extended to any arbitrary anomaly detection method.

6.4 Neural Network Method
6.4.1 Model Description
Inmachine learning, especially deep learning, a neural network (NN) is
also an essential algorithm that CA contributes to anomaly detection,
with its core gradient descent method being the most significant
technique in CA [123]. For anomaly detection, a NN extracts the
characteristics of abnormal behavior by adaptive learning and learns
the normal behavior pattern from the training set. Then, samples with
anomalously-related labels in the test set will be anomalies [124].

The loss function to be minimized in a NN is:

L w( ) � 1
| X | ∑

x∈X
l x, w( ), (28)

where w is the weight of the network, X is the training set with labels
and l(x,w) denotes the loss calculated by the sample x∈Xand its label.

The gradient descent method is a first-order optimization
algorithm usually applied to find the minima of a function. An
iterative search is performed to the point with the specified step size
from the current point along the opposite direction of the gradient
(or approximate gradient), which is the direction of steepest descent.
As the most common gradient descent method in NN, minibatch
stochastic gradient descent [45] is usually called simply stochastic
gradient descent (SGD) in recent literature even though it operates
on mini-batches. It performs the following parameter update:

wt+1 � wt − η
1
N

∑
x∈B

▽l x, wt( ), (29)

where B is the minibatch sampled from X and N � |B| is the
minibatch size, η denotes the learning rate, t represents the
iteration index, and ▽l(x, wt) represents the gradient of loss
l(x, w). Therefore, the parameter update is a back-propagation
process along the gradient, as demonstrated in Eq. 30:

▽l x, wt( ) � zl x, wt( )
zw

� 1
N

∑N
n�1

zln x, wt( )
zw

. (30)

6.4.2 Systems and Applications
Many neural networks have been applied to specific fields of
anomaly detection and have been investigated with appealing
results. For example, Zenati et al. [125] leveraged bidirectional
generative adversarial networks (BiGAN) for image and network
intrusion detection, Gao et al. [126] applied CNN for time series
anomaly detection in 367 public benchmark datasets from Yahoo,
and Xu et al. [127] proposed a cluster-based deep adaptation
network (CDAN) model that is adaptable for the spinning power
consumption anomaly detection problem in the real-environment
yarn spinning workshop. These studies have achieved a desirable
performance and high speed.

6.4.3 Strengths and Limitations
As an unconstrained optimization in convex optimization theory, the
gradient descent method achieves a rapid decline in the loss function
by the convex path, contributing considerably to the behavior learning
of normal samples and anomalies. NN is a non-parametric method
that typically employs gradient descent.With the best architecture and
an efficient training procedure, anomaly detection by a NN exhibits
higher AUC and F1 scores than other state-of-the-art methods, such
as LRR [88] and isolation forests (IF) [128]. Nevertheless, a NN
generally desires adequate training data for convergence. Another
critical drawback of this method may be that it can not provide the
analyst with clear interpretability of why the system believes an entity
is potentially anomalous.

7 OTHER CONVEX ANALYSIS-BASED
ANOMALY DETECTION METHODS

In addition to the density estimation method, matrix factorization
method, and machine learning method, there are also a number of
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other CA-based anomaly detection methods which still benefit from
the geometrical and computational advantages of CA. Robust
approximation, efficient computation, and mathematical
optimization of CA make these techniques effective and reliable,
which is a critical feature for deployment in practice.

In [31], a novel technique of finding a convex combination of
outputs from anomaly detectors to maximize the number of true
alarms in τ-fraction of most anomalies was proposed for security
domain. In the experimental evaluation attack detections of
NetFlow and HTTP network, this technique outperforms prior
work, and it is also more robust to noise in labels of training data.

In [129], anomaly detector for control systems based on CUSUM
was improved by breaking down the original nonlinearity into
several convex optimization problems. In a simple example, it is
shown that this anomaly detector could better diminish the attack
impact and detect attacks.

In [32], CMTMSOMwas proposed with the contributions of
the powerful convex and continuous optimization techniques
to diagnose Parkinson’s disease. Results on Parkinson
telemonitoring dataset indicate that this method performs
better than current parametric models.

In [130], CRO-FADALARA was proposed with a cleaning
procedure and RO-FADALARA (Robust Outlier FADA for
LARge Applications) to detect functional anomalies. This
approach can not only return archetypoids but also output
a set of outliers together with the importance that each variable
had in the outlier detection. In [131], anomalous events
during gameplay were detected through archetypal analysis
(AA) with the reconstruction error distribution. In addition,
archetypal analysis was explored to detect hyperspectral
anomalies [132], anomalous flows in urban water networks
[133], and so on.

TABLE 3 | Anomaly detection performance of CA-based methods with other baseline.

Categories Dataset Metrics Methods and their performance

Indirect density
estimation [71]

SMART dataset [70] AUC uLSIF (0.881) KLIEP (0.836) LogReg (0.856) KMM
(0.861)

OSVM (0.843) LOF (0.847) KDE
(0.736)

Matrix factorization [88] Yale-Caltech [138] AUC LRR (0.9927) RPCA (0.9863) SR (0.9239) PCA (0.9653)
Support vector domain [43] Water pump dataset [134] ϵM (%) Normal density (16.6) Parzen density (42.0) MoG (14.4) KNN (22.5) SVDD (9.9)
Convex hull [110] User verification

dataset [139]
AUC Normal density (0.87) Minimum Spanning Trees(0.92)

K-means (0.93)
MoG (0.92) APE (0.93) NAPE (0.98)

Online convex
programming [122]

Occupancy dataset [136] AUC AD-HKDE (0.9907) K-D Tree (0.9854) FOGD (0.9490) KNN (0.9854) KDE (0.9368)

Neural network [126] Yahoo benchmark
datasets [140]

F1 Score RobustTAD (0.693) ARIMA (0.225) SHESD (0.494) Donut (0.029)

Other methods [33] Breast Cancer
Wisconsin [141]

AUC AA + k-NN (0.9851) LOF (0.9816) RPCA (0.9664) HBOS (0.9827) KNN
(0.9791)

The CA-based methods are shown in bold.

TABLE 4 | Summary of convex theory and its application in this paper.

Category Theoretical basis of
convex analysis

Strengths and limitations Typical applications

Density
estimation

direct Jensen’s inequality Wide application, quick computation; the difficulty of
choosing the number of mixed components, sensitivity
to the curse of dimensionality

Nuclear explosion detection, biological
virus invasion recognition

indirect Least squares approximation High scalability to large data sets; vulnerability to a
poisoning attack

Network intrusion detection, computer
game cheats detection

Matrix
factorization

\ Norm approximation Efficient computation; limitation to matrix data Image outlier detection, process fault
monitoring

Machine
learning

support vector
domain

Convex quadratic
programming and convex
polytope

Appealing performance on sparse and complex data
sets; little suitableness to data with small target error
rates and high dimensionality

Machine diagnostics, disease detection

convex hull Convex polytope No overfitting even in the high-dimension situation;
incomplete advantages of every model

Industrial fault intelligent diagnosis,
multiaxial high-cycle fatigue recognition

online convex
programming

Online convex programming Real-time computation in online anomaly detection; no
extension to arbitrary application

Stream data detection in industry
production, network routing, and other
fields

neural network Steepest descent Enjoyable performance; prerequisite to adequate data,
no clear explanations about the mechanism of the
anomaly detection

Image outlier detection, network
intrusion detection
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8 BENCHMARK AND COMPARISON

Based on the experiments introduced by several representative
CA-based anomaly detection literatures, we summarize the
performance of CA-based methods with other baseline
methods in some golden-standard datasets. A comprehensive
comparison is demonstrated in Table 3, in which the model with
the best performance in the respective dataset is presented, and
the CA-based methods are shown in bold. We introduce the
support vector domain method and the online convex
programming method in detail.

To investigate how the SVDD works in a real outlier detection
problem, Tax and Duin focused on a machine diagnostics
problem: the distinguishment of the pump with faulty
operation conditions [43]. In the dataset of the submersible
water pump [134], the outlier data contains pumping
situations with loose foundation, imbalance and failure in
loads and speeds of the pump. To see how well the SVDD
performs, they compared it with a number of other methods,
including the normal density, theMoG (optimized using EM), the
Parzen density, and KNN. To make a more quantitative
comparison, an error measure (ϵM) is derived from the ROC
curves, as demonstrated in Eq. 31,

ϵM � ∫B

A
ϵΠ ϵ1( )dϵ1, (31)

where ϵ1 is the error of the first kind and ϵΠ is the error of the
second kind of the investigated interval (A, B) [135]. The
methods were applied to number of features ranging from 3 up
to 64, and Table 3 shows their overall best performances with
30 features. Results indicate that in almost all cases, the SVDD,
which focuses on modeling the boundary, obtains a better
performance than other methods, especially for higher
dimensionalities.

In addition, with the latest progress of the online convex
programming method, the anomaly detector with
hierarchical kernel density estimators (AD-HKDE) method
was applied to the Occupancy dataset [136], which consists of
10,808 data points whose labels correspond to occupied
(normal) and unoccupied (anomalous) room states [122],
and other seven real-world datasets. Using ROC and AUC,
the performance of AD-HKDE was compared with that of
KNN, K-D tree nearest neighbor search (K-D Tree), Fourier
online gradient descent (FOGD) [137], and Kernel density
estimation (KDE). As seen in Table 3, the AD-HKDE method
achieves the highest AUC score, indicating that it has a
stronger guarantee in relatively smaller false alarm regions
(except a few cases). However, when the data size is small,
AD-HKDE can not perfectly learn the bandwidths in all
regions across time, thus yield relatively unsatisfactory
anomaly detection results.

9 CONCLUSION AND DISCUSSION

Anomaly detection is a crucial technique used to identify
abnormal samples with behavior or patterns conveying

critical (usually harmful or even fatal) information. CA has
been widely used in anomaly detection because of its ability to
robustly approximate in algebra and geometry, efficiently
compute to global unique solutions, and mathematically
optimize. However, little work has realized a comprehensive
classification of the CA-based anomaly detection. In this
paper, we classify the existing CA-based anomaly detection
techniques into four categories: density estimation, matrix
factorization, machine learning, and other methods,
according to the underlying principle of CA in anomaly
detection. Models of wide application domains and data
types from the general to the particular such as matrices
and time series have been intensively investigated. The
main methods discussed in this review are summarized in
Table 4.

In summary, this paper presents an in-depth literature
review of the CA-based anomaly detection techniques, including
their latest progress, systems and applications, as well as strengths
and limitations. Functions and contributions of CA in anomaly
detection are underlined, demonstrating the multidisciplinary
property of CA-based anomaly detection and providing new
and succinct understanding of the association between anomaly
detection and CA.

With the remarkable progress made in the techniques of big
data and machine learning, CA-based anomaly detection
shows great promise for more expeditious, accurate and
intelligent detection capacities. In this field, further research
should be conducted on the following open challenges to
explore this promising domain:

1) Like the density estimation and matrix factorization
techniques mentioned in this paper, they are popular
and effective strategies for anomaly detection based on
CA that declaring observations anomalous if their values
deviate below or over some threshold. However, how to set
this threshold with high efficiency remains in doubt, and
this notoriously difficult problem should be resolved.

2) At present, the data streams generated in many industrial
scenarios put forward higher requirements for anomaly
detection algorithms, and real-time results should be
generated without waiting for all inputs. Consequently,
taking the support vector domain method as an example,
future studies should explore how to utilize an online
process to learn the hypersphere boundary of SVDD in
streaming environments.

3) Incorporating prior rules for convex theory-based anomaly
detection models, especially machine learning methods,
could be investigated intensively to enhance their
performance. For instance, mine the structural
information of the data itself by norms, such as ℓ2,1

norm and ℓ2,0 norm.
4) Considering the data characteristics of the anomaly

detection domain, where anomalies are few and two
classes are extremely unbalanced, the generalization
ability of machine learning methods, especially the
gradient descent-based model, should be strengthened to
be more suitable and applicable.
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